Homological algebra exercise sheet Week 14

- 1. Suppose that $F: \mathbf{K}^+(\mathcal{A}) \to \mathbf{K}(\mathcal{C})$ is a morphism of triangulated categories and \mathcal{B} is a Serre subcategory of \mathcal{A} (see Exercise sheet 12 for definition and properties). If \mathcal{A} has enough injectives, show that the restriction of \mathbf{R}^+F to $\mathbf{D}_{\mathcal{B}}^+\mathcal{A}$ is the derived functor $\mathbf{R}_{\mathcal{B}}^+F$.
- 2. In general we cannot get a unbounded derived functor by taking unbounded projective (injective) resolutions. Here is a counterexample.
 - (a) Show that for the $R = \mathbb{Z}/4\mathbb{Z}$ -module category, the following complex consists of projective objects and is quasi-isomorphic to the zero complex.

$$P^*: \cdots \xrightarrow{2} R \xrightarrow{2} R \xrightarrow{2} R \rightarrow \cdots$$

(b) Show that $P^* \otimes_R \mathbb{Z}/2\mathbb{Z}$ is not quasi-isomorphic to zero complex.

This shows that applying an exact functor on quasi-isomorphic unbounded complexes of projective objects can give different result in derived category. Remember that in the bounded case, the result is determined by Comparison Theorem.

- 3. Let $F: A \to \mathcal{B}$ be an additive functor of abelian categories and suppose \mathcal{A} has enough injectives (so the usual derived functors exist). We let the cohomological dimension of F be the first n such that $R^iF = 0 \ \forall i > n$. We make a similar definition when \mathcal{A} has enough projectives for the homological dimension.
 - (a) Show if F has finite cohomological dimension, then every exact complex of F-acyclic objects is an F-acyclic complex.
 - (b) Show if F has finite cohomological dimension, $\mathbf{R}F$ exists on $D(\mathcal{A})$ (Hint: Consider K' the full subcategory of $K(\mathcal{A})$ consisting of complexes of F-acyclic objects in \mathcal{A} , and use the Generalized Existence Theorem).
- 4. Consider the derived functor $\mathbf{L} \operatorname{Tot}^{\oplus}(\bullet \otimes B)$ from $D(R\operatorname{-\mathbf{mod}})$ to $D(\mathbf{Ab})$, where R is a commutative ring and B a cochain complexe of R modules. Show that $A \otimes^L B$ is naturally isomorphic to $\mathbf{L} \operatorname{Tot}^{\oplus}(\bullet \otimes B)A$ in $D(\mathbf{Ab})$.
- 5. Show that the total tensor product may be refined to a functor

$$\otimes_R^L: D^-(R_1\text{-}\mathbf{mod}\text{-}R) \times D^-(R\text{-}\mathbf{mod}\text{-}R_2) \to D^-(R_1\text{-}\mathbf{mod}\text{-}R_2)$$

in the sense that the diagram

commutes where the vertical arrows are the forgetful functors. For R a commutative ring, refine it further to

$$\otimes_R^L: D^-(R\operatorname{-\mathbf{mod}}) \times D^-(R\operatorname{-\mathbf{mod}}) \to D^-(R\operatorname{-\mathbf{mod}})$$

and show there is a natural isomorphism $A \otimes_R^L B \cong B \otimes_R^L A$.

6. If $F: K'' \to K(\mathcal{D}), G: K' \to K'', H: K \to K'$ are three consecutive morphisms of triangulated categories, where $K \subset K(\mathcal{A}), K' \subset K(\mathcal{B}), K'' \subset K(\mathcal{C})$ are localizing triangulated subcategories. Assume all necessary derived functors exist and can be composed. Using the notation of the composition theorem, show that as natural transformations from $\mathbf{R}(FGH)$ to $\mathbf{R}F \circ \mathbf{R}G \circ \mathbf{R}H$ we have $\zeta_{G,H} \circ \zeta_{F,GH} = \zeta_{F,G} \circ \zeta_{FG,H}$.